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Introduction’

« Speaker has been heavily involved with space cryogenics for a
number of years

* In-situ resource utilization (ISRU) needs cryogenic technologies to be
successful

« Cryogenic technologies being studied for advanced upper stages and
propellant depots have significant overlap with ISRU

* Objectives of the talk
— Familiarize the audience with ISRU propellant production
— Show the need for cryogenic technologies in ISRU
— Demonstrate the commonality with propellant depot work already underway
— Suggest areas were ISRU specific research is required
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Vision of In-Situ Resource U'til'izatioh (cifca 2005).
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Mars Propulsion'ISRU_;

* Design Reference Mission 5.0 (NASA baseline Mars mission)

— Oxygen generated from Martian atmosphere using solid oxide CO,
electrolyzers (SOCES)

— Rest of propellants brought from earth
— Liquefier used to store liquid oxygen in tank, uses cryocooler
— Cryocoolers also used to assist with storage of methane and hydrogen

* Alternates

— Several alternate schemes for available breaking atmospheric CO,

— Electrolysis can be used on water to produce both hydrogen and oxygen
(current studies show abundant ice in polar regions)

— Methane propellant can be generated from either hydrogen brought from
earth or hydrogen generated on Mars

— Metal-oxide bearing rocks can be split apart for oxygen similar to lunar
regolith
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Lunar Propulsion 'ISRU__'

« Oxygen extraction from lunar regolith
— Lunar highland regolith ~40% oxygen but breaking silicate bonds require high temperature (as
much as 2500 C)
— Lunar mare regolith on average 14% iron oxide compounds such as ilmenite, olivine, and
pyroxene: can have oxygen extracted at lower temperatures with hydrogen feed stock

« Water and volatile extraction from lunar polar regolith
— Lunar Prospector indicates the possibility of water ice at both poles
— Water can be electrolyzed

* Refueling for trans-Mars
Injection from near lunar way-
point
— ~60% of LEO trans-Mars injection

mass is hydrogen and oxygen
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Phobos/Deimos Propulsion'ISRU

 First proposed by O'Leary (1984)
* More recent work in Lee (2009)
« Significantly less delta-v than landing on Martian surface
» Resource potential
— Regolith for oxygen production
— Electrolysis of water if water can be found
* Recent observation suggest a good potential for water

« Questions to be answered for an ISRU design

— What are the properties of the regolith?

— What volatiles are near the surface?

— How deep is the water (ice or hydrates) located?

— Can ISRU operations in very low-g be performed efficiently?
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ISRU “Gear” Ratios

Propulsion “Gear” ratio = amount of mass in low Earth orbit (LEO)
required to transfer a unit of mass to the desired destination

(Mass in LEO/Mass payload landed on Moon) ~4 for cargo at lunar
south pole

(Mass in LEO without lunar fueling/Mass in LEO with lunar refueling)
~2.5 for Mars Mission

(Mass in LEO/Mass in Mars orbit) ~5 similar to mass landed on
Phobos/Deimos

(Mass in LEO/Mass landed on Mars surface) ~10.5 aerobraked --
~17.2 all propulsive

*Numbers estimated from Rapp (2008)
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Why Cryogenics for ISRQ? W ¥

 Easily produced ISRU propellants are gases at room temperature with
low densities

« High pressure and metal hydride storage have mass to storage
volume ratios unsuitable for rocketry

— Rocket equation contains two major terms: isp and mass ratio -- low
numbers in either produce low performance

« Cryogenic storage is mandatory for high performance rockets
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Extended ISRU
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« We have no demonstrated capability to store cryogenic Centaurgey k
propellants in space for more than a few hours ‘ %?
— SOA is Centaur’s 9 hours with boil-off rates on the order of 30%
per day
* We have no demonstrated, flight-proven method to gauge
cryogenic propellant quantities accurately in microgravity
— Need to prove methods for use with both settled and unsettled
propellants
* We have no proven way to guarantee we can get gas-free
liquid cryogens out of a tank in microgravity
— Gas-free liquid is required for safe operation of a cryo propulsion
system
— Need robust surface-tension liquid acquisition device (LAD)
analogous to those in SOA storable propulsion systems
— Only known experience in the world is the single flight of the
Russian Buran (liquid oxygen reaction control system)
* We have no demonstrated ability to move cryogenic liquids
from one tank (or vehicle) to another in space
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REVOLUTIONARY AEROSPACE SYSTEMS COMNMCEPTS
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Different types of depots for space exploration architectures
(provided to Augustine Commission “Beyond Earth Orbit”
Subcommittee 2009)
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Recent Technology Maturation in Pictures ey
gy _ ¥ N%ﬁ.

LH2 Active Cooling — Thermal Test (RBO) and Acoustic Test (VATA)

Sight Glass during Line
Chilldown

Scaling Studies — MLI and Acti\-le_>
Thermal Control (MLI) Penetration Heat Leak Study

Composite Strut Study
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Cryogenic Storage Control Technology Apbroach

Efficient Low-g Venting

« Thermodynamic Vent System (TVS) ensures that
only gas phase is vented in low gravity without using
settling thrusters.

« De-stratifies propellant tank contents, with mixer

Reduced Boil-off Technologies

« Eliminate heat leak into the storage tank, re-condense
vapor, or potentially sub-cool propellant

* 90 K cryocoolers to achieve reduced boil off for hydrogen
storage

« Demonstrated capability of ~50% reduction in tank heat
load

Flight representative Turbo-
Brayton Cryocooler used in

technology maturation
| . Glenn Research Center ' 14
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No-vent Fill

— Uses evaporative cooling and sub-
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— Demonstrated in 1990’s at NASA
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Mars Liquefier

Liquefaction and Storage

— Cryocoolers are used to cool the process
stream and condense the gas to liquid

— Liquid is transferred to insulated tanks for
storage

= Assumptions

— Process stream is purified prior to liquefaction

— Liquid can be stored in ascent stage

Pulse Tube
Cryocooler

Mars Ascent

= Tank insulation will have to trade poorer performing C?);ac?eept g »,‘_
but non-vacuum jacket insulation with weight of T
vacuum jacket _ _

= Current liquefier approach requires use of a catch Liquefier
tank for collection Schematic

Methane Cryocooler
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Mars Atmosphere Insulation =~

 Although low pressure, the Mars atmosphere is sufficient to
significantly degrade MLI performance due to gas conduction

 Alternate insulation approaches include foam (worst performance),
aerogel, aerogel/MLI, and MLI/vacuum jackets

« A vacuum jacket designed to only work on Mars can be significantly
lighter

— Only has to support the 5 torr Martian atmospheric pressure versus the 760
torr of Earth

— Typical concepts launch with pad pressure in the vacuum jacket during
launch which is then vented to space en route to Mars
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Variation of heat flux (g) with CVP for different cryogenic insulation systems and materials.
Boundary temperatures: 78 K and 293 K. Residual gas is nitrogen.
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Concluding Remarks

ISRU is of significant advantage to human exploration

Cryogenic technologies are required for ISRU success

Cryogenic technologies from upper stages and depots for storage and
transfer can be applied to ISRU

— TVS systems for storage and venting

— Reduced boil-off for long term storage

— Large capacity space rated cryocoolers

— Low loss transfer systems (all locations) and low-g transfer (Lunar,
Phobos/Deimos)

ISRU unique technologies need further development
— Liquefier is unique to ISRU although cryocoolers used may not be

— Mars surface insulation cannot use the space vented MLI of upper stages
and depots without adding a vacuum jacket, but may still be able to take
advantage of cryocoolers and boil-off reduction
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